weakly compact(弱紧的;弱拓扑下紧致的):在泛函分析/拓扑学中,指一个集合在弱拓扑(weak topology)下是紧致(compact)的。直观上说:用“更弱”的收敛概念(弱收敛)来看,它仍然具有紧致集合那种“不会向无穷处散开、总能抽出收敛子列/子网”的性质。
(注:不同语境下可能涉及“序列弱紧致”“弱*紧致”等相关概念。)
/ˈwiːkli ˈkɒmpækt/
/ˈwiːkli ˈkɑːmpækt/
A closed bounded set is not always weakly compact.
闭有界集并不总是弱紧的(在弱拓扑下不一定紧致)。
By the Banach–Alaoglu theorem, the unit ball of the dual space is weak-star compact, and in many settings this yields weakly compactness results for bounded sets.
由巴拿赫–阿劳格鲁定理可知,对偶空间的单位球在弱*拓扑下是紧致的;在许多情形中,这会导出关于有界集合弱紧性的结论。
该术语由 weakly(弱地/在弱意义下) + compact(紧致的) 组合而成: