ideal quotient(理想商/商理想)指在环论中由一个理想(或两个理想)构造出来的“商”对象,最常见用法是:
/ˈaɪdiəl ˈkwoʊʃənt/
We form the ideal quotient \(R/I\) to simplify the problem.
我们构造商环 \(R/I\) 来简化问题。
In commutative algebra, the ideal quotient \((I:J)\) helps describe elements that send \(J\) into \(I\) under multiplication.
在交换代数中,理想商 \((I:J)\) 用来描述那些在乘法下把 \(J\) “送入” \(I\) 的元素。
ideal 来自“idea(观念)”一词的历史演变,在数学里由 19 世纪代数发展中被赋予“理想(ideal)”这一专门含义,用于描述环中具有良好封闭性质的子集。quotient 源自拉丁语 quoties(多少次/多少份),表示“商、商对象”。合在一起,ideal quotient 就表示“与理想相关的商(或商构造)”。