V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX  ›  Or2  ›  全部回复第 14 页 / 共 17 页
回复总数  328
1 ... 6  7  8  9  10  11  12  13  14  15 ... 17  
2016-04-15 23:15:37 +08:00
回复了 Or2 创建的主题 问与答 求助 R 的大神,求助一个关于改进 R 速度的问题
data = read.csv("C:/Users/Bamb0o0o0/Desktop/dataset.csv",header = TRUE) # import the data as Data Frame

# dummies

data$logearnings = log(data$earnings)

data$occ1 = ifelse(data$occ == 1,1,0)
data$occ2 = ifelse(data$occ == 2,1,0)
data$occ3 = ifelse(data$occ == 3,1,0)
data$occ4 = ifelse(data$occ == 4,1,0)

data$northeast = ifelse(data$region == 1,1,0)
data$south = ifelse(data$region == 2,1,0)
data$midwest = ifelse(data$region == 3,1,0)
data$west = ifelse(data$region == 4,1,0)
data$central = ifelse(data$region == 5,1,0)

data$exp = data$age - data$edu - 6 # 6 the age people gets in to primary school

data$exp_2 = (data$exp)**2

data$exp_3 = (data$exp)**3

data$edu_ability = data$edu*data$ability

Data=subset(data,select=-c(earnings,occ,region)) # create a new Data Frame with out column earnings, occ, region

female_earnings = subset(Data,Data$female == 1)
male_earnings = subset(Data,Data$female == 0)





############################################################################################
################ Bootstrap ################
############################################################################################

### empty Matrix for coefficients of OLS
matrix_Female = matrix(, nrow = 0, ncol = 11)
matrix_Male = matrix(, nrow = 0, ncol = 11)

for (s in 1:500){
### empty data frame for new sample
df = data.frame(id = integer(), ability = integer(), age = integer(),
female = integer(), edu = integer(), logearnings = double(), occ1 = integer(),
occ2 = integer(), occ3 = integer(), occ4 = integer(), northeast = integer(),
south = integer(), midwest = integer(), west = integer(), central = integer(),
exp = integer(), exp_2 = integer(), exp_3 = integer(), edu_ability = integer())
### create new data frame/ sample)

A = sample(Data$id, 10000, replace = TRUE)

for (i in A) {
df = rbind(df,Data[i,])}

df_female_earnings= subset(df,df$female == 1)
df_male_earnings = subset(df,df$female == 0)

### OLS for new Sample
Model_11_F = lm(df_female_earnings$logearnings ~ df_female_earnings$edu + df_female_earnings$northeast
+ df_female_earnings$south + df_female_earnings$midwest + df_female_earnings$age
+ df_female_earnings$ability + df_female_earnings$exp_2 + df_female_earnings$exp_3
+ df_female_earnings$edu_ability + df_female_earnings$west)
#summary(Model_11_F)
coef(Model_11_F)
matrix_Female=rbind(matrix_Female,coef(Model_11_F))

Model_11_M = lm(df_male_earnings$logearnings ~ df_male_earnings$edu + df_male_earnings$northeast
+ df_male_earnings$south + df_male_earnings$midwest + df_male_earnings$age
+ df_male_earnings$ability + df_male_earnings$exp_2 + df_male_earnings$exp_3
+ df_male_earnings$edu_ability + df_male_earnings$west)
#summary(Model_11_M)
coef(Model_11_M)
matrix_Male=rbind(matrix_Male,coef(Model_11_M))
}


Female_Mean = colMeans(matrix_Female)
Male_Mean = colMeans(matrix_Male)

Matrix_Female_Mean = matrix(colMeans(matrix_Female), nrow=500, ncol=11, byrow=TRUE)
Matrix_Male_Mean = matrix(colMeans(matrix_Male), nrow=500, ncol=11, byrow=TRUE)

#deviation matrix
F = (matrix_Female - Matrix_Female_Mean)^2
M = (matrix_Male - Matrix_Male_Mean)^2

F_sum = colSums(F)
M_sum = colSums(M)

哦,现在贴,第一次发这样的帖子不知道该怎么办。

老师的要就是不让用 boot package ,所以我就索性自己弄了。结果速度慢的一塌糊涂
随他骂了,他又不能实现他的宏大愿望,早晚要把他自己气死。 2333333
2015-08-21 12:40:34 +08:00
回复了 Shazoo 创建的主题 分享发现 有谁想要 3D 打印的键盘帽吗?
我想打怎么联系?
2015-04-06 14:34:56 +08:00
回复了 sgissb1 创建的主题 汽车 超级屌丝买代步车,求推荐。价格在 4W-5W 之间
组装个蝙蝠侠的摩托车~
2015-03-18 11:48:10 +08:00
回复了 qizhca 创建的主题 问与答 你们会在网上配眼镜吗?
不是特别需要。基本上去眼镜店试试,然后网上买就好了。
2015-03-17 23:11:39 +08:00
回复了 qizhca 创建的主题 问与答 你们会在网上配眼镜吗?
能不能只买框子?不装眼镜片的:P
1 ... 6  7  8  9  10  11  12  13  14  15 ... 17  
关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   1102 人在线   最高记录 6679   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 31ms · UTC 18:58 · PVG 02:58 · LAX 10:58 · JFK 13:58
Developed with CodeLauncher
♥ Do have faith in what you're doing.