V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
推荐学习书目
Learn Python the Hard Way
Python Sites
PyPI - Python Package Index
http://diveintopython.org/toc/index.html
Pocoo
值得关注的项目
PyPy
Celery
Jinja2
Read the Docs
gevent
pyenv
virtualenv
Stackless Python
Beautiful Soup
结巴中文分词
Green Unicorn
Sentry
Shovel
Pyflakes
pytest
Python 编程
pep8 Checker
Styles
PEP 8
Google Python Style Guide
Code Style from The Hitchhiker's Guide
fasionchan
V2EX  ›  Python

[ Python 源码剖析] 对象模型概述

  •  
  •   fasionchan · 2020-06-05 12:24:24 +08:00 · 2080 次点击
    这是一个创建于 1626 天前的主题,其中的信息可能已经有所发展或是发生改变。

    Python 是一门 面向对象 语言,实现了一个完整的面向对象体系,简洁而优雅。

    与其他面向对象编程语言相比, Python 有自己独特的一面。 这让很多开发人员在学习 Python 时,多少有些无所适从。 那么,Python 对象模型都有哪些特色呢?

    一切皆对象

    首先,在 Python 世界, 基本类型也是对象 ,与通常意义的“对象”形成一个有机统一。 换句话讲, Python 不再区别对待基本类型和对象,所有基本类型内部均由对象实现。 一个整数是一个对象,一个字符串也是一个对象:

    >>> a = 1
    >>> b = 'abc'
    

    其次, Python 中的 类型也是一种对象 ,称为 类型对象 。 整数类型是一个对象,字符串类型是一个对象,程序中通过 class 关键字定义的类也是一个对象。

    举个例子,整数类型在 Python 内部是一个对象,称为 类型对象 :

    >>> int
    <class 'int'>
    

    通过整数类型 实例化 可以得到一个整数对象,称为 实例对象 :

    >>> int('1024')
    1024
    

    面向对象理论中的“  ”和“ 对象 ”这两个基本概念,在 Python 内部都是通过对象实现的,这是 Python 最大的特点。

    类型、对象体系

    a 是一个整数对象( 实例对象 ),其类型是整数类型( 类型对象 ):

    >>> a = 1
    >>> type(a)
    <class 'int'>
    >>> isinstance(a, int)
    True
    

    那么整数类型的类型又是什么呢?

    >>> type(int)
    <class 'type'>
    

    可以看到,整数类型的类型还是一种类型,即 类型的类型 。 只是这个类型比较特殊,它的实例对象还是类型对象。

    Python 中还有一个特殊类型 object ,所有其他类型均继承于 object ,换句话讲 object 是所有类型的基类:

    >>> issubclass(int, object)
    True
    

    综合以上关系,得到以下关系图:

    内置类型已经搞清楚了,自定义类型及对象关系又如何呢?定义一个简单的类来实验:

    class Dog(object):
    
        def yelp(self):
            print('woof')
    

    创建一个 Dog 实例,毫无疑问,其类型是 Dog :

    >>> dog = Dog()
    >>> dog.yelp()
    woof
    >>> type(dog)
    <class '__main__.Dog'>
    

    Dog 类的类型自然也是 type ,其基类是 object (就算不显式继承也是如此):

    >>> type(Dog)
    <class 'type'>
    >>> issubclass(Dog, object)
    True
    

    自定义子类及实例对象在图中又处于什么位置?定义一个猎犬类进行实验:

    class Sleuth(Dog):
    
        def hunt(self):
            pass
    

    可以看到, 猎犬对象( sleuth )是猎犬类( Sleuth )的实例, Sleuth 的类型同样是 type :

    >>> sleuth = Sleuth()
    >>> sleuth.hunt()
    >>> type(sleuth)
    <class '__main__.Sleuth'>
    >>> type(Sleuth)
    <class 'type'>
    

    同时, Sleuth 类继承自 Dog 类,是 Dog 的子类,当然也是 object 的子类:

    >>> issubclass(Sleuth, Dog)
    True
    >>> issubclass(Sleuth, object)
    True
    

    现在不可避免需要讨论 type 以及 object 这两个特殊的类型。

    理论上, object 是所有类型的 基类 ,本质上是一种类型,因此其类型必然是 type 。 而 type 是所有类型的类型,本质上也是一种类型,因此其类型必须是它自己!

    >>> type(object)
    <class 'type'>
    >>> type(object) is type
    True
    
    >>> type(type)
    <class 'type'>
    >>> type(type) is type
    True
    

    另外,由于 object 是所有类型的 基类 ,理论上也是 type 的基类( __base__ 属性):

    >>> issubclass(type, object)
    True
    >>> type.__base__
    <class 'object'>
    

    但是 object 自身便不能有基类了。为什么呢? 对于存在继承关系的类,成员属性和成员方法查找需要回溯继承链,不断查找基类。 因此,继承链必须有一个终点,不然就死循环了。

    这就完整了!

    可以看到,所有类型的基类收敛于 object ,所有类型的类型都是 type ,包括它自己! 这就是 Python 类型、对象体系全图,设计简洁、优雅、严谨。

    该图将成为后续阅读源码、探索 Python 对象模型的有力工具,像地图一样指明方向。 图中所有实体在 Python 内部均以对象形式存在,至于对象到底长啥样,相互关系如何描述,这些问题先按下不表,后续一起到源码中探寻答案。

    变量只是名字

    先看一个例子,定义一个变量 a ,并通过 id 内建函数取出其“地址”:

    >>> a = 1
    >>> id(a)
    4302704784
    

    定义另一个变量 b ,以 a 赋值,并取出 b 的“地址”:

    >>> b = a
    >>> id(b)
    4302704784
    

    惊奇地看到, a 和 b 这两个变量的地址居然是相同的!这不合常理呀!

    对于大多数语言( C 语言为例),定义变量 a 即为其分配内存并存储变量值:

    变量 b 内存空间与 a 独立,赋值时进行拷贝:

    在 Python 中,一切皆对象,整数也是如此, 变量只是一个与对象关联的名字 :

    而变量赋值,只是将当前对象与另一个名字进行关联,背后的对象是同一个:

    因此,在 Python 内部,变量只是一个名字,保存指向实际对象的指针,进而与其绑定。 变量赋值只拷贝指针,并不拷贝指针背后的对象。

    可变对象 与 不可变对象

    定义一个整数变量:

    >>> a = 1
    >>> id(a)
    4302704784
    

    然后,对其自增 1 :

    >>> a += 1
    >>> a
    2
    >>> id(a)
    4302704816
    

    数值符合预期,但是对象变了!初学者一脸懵逼,这是什么鬼?

    一切要从 可变对象 和 不可变对象 说起。 可变对象 在对象创建后,其值可以进行修改; 而 不可变对象 在对象创建后的整个生命周期,其值都不可修改。

    在 Python 中,整数类型是不可变类型, 整数对象是不可变对象。 修改整数对象时, Python 将以新数值创建一个新对象,变量名与新对象进行绑定; 旧对象如无其他引用,将被释放。

    每次修改整数对象都要创建新对象、回收旧对象,效率不是很低吗? 确实是。 后续章节将从源码角度来解答: Python 如何通过 小整数池 等手段进行优化。

    可变对象是指创建后可以修改的对象,典型的例子是 列表 ( list ):

    >>> l = [1, 2]
    >>> l
    [1, 2]
    >>> id(l)
    4385900424
    

    往列表里头追加数据,发现列表对象还是原来那个,只不过多了一个元素了:

    >>> l.append(3)
    >>> l
    [1, 2, 3]
    >>> id(l)
    4385900424
    

    实际上,列表对象内部维护了一个 动态数组 ,存储元素对象的指针:

    列表对象增减元素,需要修改该数组。例如,追加元素 3 :

    定长对象 与 变长对象

    Python 一个对象多大呢?相同类型对象大小是否相同呢? 想回答类似的问题,需要考察影响对象大小的因素。

    标准库 sys 模块提供了一个查看对象大小的函数 getsizeof :

    >>> import sys
    >>> sys.getsizeof(1)
    28
    

    先观察整数对象:

    >>> sys.getsizeof(1)
    28
    >>> sys.getsizeof(100000000000000000)
    32
    >>> sys.getsizeof(100000000000000000000000000000000000000000000)
    44
    

    可见整数对象的大小跟其数值有关,像这样 大小不固定 的对象称为 变长对象 。

    我们知道,位数固定的整数能够表示的数值范围是有限的,可能导致 溢出 。 Python 为解决这个问题,采用类似 C++ 中 大整数类 的思路实现整数对象 —— 串联多个普通 32 位整数,以便支持更大的数值范围。 至于需要多少个 32 位整数,则视具体数值而定,数值不大的一个足矣,避免浪费。

    这样一来,整数对象需要在头部额外存储一些信息,记录对象用了多少个 32 位整数。 这就是变长对象典型的结构,先有个大概印象即可,后续讲解整数对象源码时再展开。

    接着观察字符串对象:

    >>> sys.getsizeof('a')
    50
    >>> sys.getsizeof('abc')
    52
    

    字符串对象也是变长对象,这个行为非常好理解,毕竟字符串长度不尽相同嘛。 此外,注意到字符串对象大小比字符串本身大,因为对象同样需要维护一些额外的信息。 至于具体需要维护哪些信息,同样留到源码剖析环节中详细介绍。

    那么,有啥对象是定长的呢?—— 浮点数对象 float :

    >>> sys.getsizeof(1.)
    24
    >>> sys.getsizeof(1000000000000000000000000000000000.)
    24
    

    浮点数背后是由一个 double 实现,就算表示很大的数,浮点数对象的大小也不变。

    为啥 64 位的 double 可以表示这么大的范围呢?答案是:牺牲了精度。

    >>> int(1000000000000000000000000000000000.)
    999999999999999945575230987042816
    

    由于浮点数存储位数是固定的,它能表示的数值范围也是有限的,超出便会抛锚:

    >>> 10. ** 1000
    Traceback (most recent call last):
    	File "<stdin>", line 1, in <module>
    OverflowError: (34, 'Result too large')
    

    更多章节

    洞悉 Python 虚拟机运行机制,探索高效程序设计之道!

    到底如何才能提升我的 Python 开发水平,向更高一级的岗位迈进? 如果你有这些问题或者疑惑,请订阅我们的专栏,阅读更多章节:

    附录

    更多 Python 技术文章请访问:小菜学 Python,转至 原文 可获得最佳阅读体验。

    订阅更新,获取更多学习资料,请关注 小菜学编程

    小菜学编程

    5 条回复    2021-05-14 05:38:31 +08:00
    levelworm
        1
    levelworm  
       2020-06-15 12:25:25 +08:00 via Android
    楼主你两篇文章都有技术含量,关注你了。等我学好 C 和一些基础知识再去看你的实现源码系列。虽然我仅仅是业余爱好者,但是搞清楚 Python 的实现一直是兴趣之一。
    fasionchan
        2
    fasionchan  
    OP
       2020-06-15 12:34:39 +08:00   ❤️ 1
    @levelworm 有空一起来研究呀哈哈
    levelworm
        3
    levelworm  
       2020-06-15 12:57:01 +08:00 via Android
    @fasionchan 必须的必须的。目前就工作中偶尔用点 Python,C 和 Linux 自己学的,刚刚入门。还没资格看你大多数的文章。
    wenqiang1208
        4
    wenqiang1208  
       2020-06-16 13:34:11 +08:00
    已关注
    IgniteWhite
        5
    IgniteWhite  
       2021-05-14 05:38:31 +08:00
    最近在有些帖子里看到了楼主的文章,写的超好,膜拜
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   907 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 25ms · UTC 20:39 · PVG 04:39 · LAX 12:39 · JFK 15:39
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.