“除法算法/带余除法定理”:在整数运算中,给定整数 \(a\) 和正整数 \(b\),一定存在整数 \(q\)(商)与 \(r\)(余数),使得
\[
a=bq+r,\quad 0\le r
/dɪˈvɪʒən ˈælɡəˌrɪðəm/
Use the division algorithm to find the remainder when 47 is divided by 6.
用除法算法求 47 除以 6 的余数。
By the division algorithm, any integer can be written as \(a=bq+r\) with \(0\le r
根据除法算法,任意整数都可写成 \(a=bq+r\) 且 \(0\le r
词源 Etymology
division 来自拉丁语 dividere,意为“分开、分配”,对应“除法/分割”。algorithm 源自中世纪拉丁语 algorismus,再上溯到波斯数学家 al-Khwārizmī(花剌子密)的名字,后来引申为“算法”。合起来 division algorithm 就是“关于除法(尤其是带余除法)的基本算法/定理”。