V2EX  ›  英汉词典

Cyclotomic Polynomial

释义 Definition

圆分多项式:在数论与代数学中,\(\Phi_n(x)\) 表示第 \(n\) 个圆分多项式,它是一个整系数不可约多项式,其根恰好是所有本原 \(n\) 次单位根(primitive \(n\)th roots of unity)。常见性质之一是: \[ x^n-1=\prod_{d\mid n}\Phi_d(x). \] (该术语也常出现在“圆分域”与“单位根”相关理论中。)

发音 Pronunciation (IPA)

/ˌsaɪkloʊˈtɑːmɪk pəˈlɪnəmiəl/

例句 Examples

The cyclotomic polynomial \(\Phi_5(x)\) has degree 4.
圆分多项式 \(\Phi_5(x)\) 的次数是 4。

Using the factorization \(x^n-1=\prod_{d\mid n}\Phi_d(x)\), we can derive properties of primitive roots of unity and prove irreducibility results over \(\mathbb{Q}\).
利用分解式 \(x^n-1=\prod_{d\mid n}\Phi_d(x)\),我们可以推导本原单位根的性质,并证明其在 \(\mathbb{Q}\) 上的不可约性等结论。

词源 Etymology

cyclotomic 来自希腊语词根 cyclo-(“圆、环”)与 -tomic(与“切分、分割”相关,源自 tomos “切割/部分”),最早与“圆分(cyclotomy)”的思想相关;在数论中指把圆周上的单位根按阶进行“分组/切分”。polynomial 来自 **poly-**(“多”)+(与“项/名称”相关的构词成分),整体表示“多项式”。合在一起即“与单位根分解密切相关的一类多项式”。

相关词 Related Words

文学与名著用例 Literary Works

  • Carl Friedrich Gauss,《Disquisitiones Arithmeticae》:涉及圆分(cyclotomy)与单位根分解的思想背景,是圆分理论的重要源头之一。
  • G. H. Hardy & E. M. Wright,《An Introduction to the Theory of Numbers》:在初等与代数数论章节中讨论单位根与相关多项式分解。
  • Kenneth Ireland & Michael Rosen,《A Classical Introduction to Modern Number Theory》:讲解圆分多项式、圆分域与相关数论结构。
  • Lawrence C. Washington,《Introduction to Cyclotomic Fields》:系统使用并研究圆分多项式与圆分域,是该主题的经典教材。
关于   ·   帮助文档   ·   自助推广系统   ·   博客   ·   API   ·   FAQ   ·   Solana   ·   1781 人在线   最高记录 6679   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 12ms · UTC 07:11 · PVG 15:11 · LAX 23:11 · JFK 02:11
♥ Do have faith in what you're doing.