V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
charslee013
V2EX  ›  MacBook

在 Apple M1 上运行 LLaMA

  •  
  •   charslee013 · 2023-03-13 11:27:28 +08:00 · 2529 次点击
    这是一个创建于 619 天前的主题,其中的信息可能已经有所发展或是发生改变。

    在 Apple M1 上运行 LLaMA


    TL;DR

    #!/usr/bin/env bash
    
    # clone repo and install dependences
    git clone https://github.com/ggerganov/llama.cpp
    cd llama.cpp
    make
    python -m pip install torch numpy sentencepiece
    
    # download 7B model
    mkdir -p models/7B/
    wget -P models/7B/ https://huggingface.co/nyanko7/LLaMA-7B/resolve/main/consolidated.00.pth
    wget -P models/7B/ https://huggingface.co/nyanko7/LLaMA-7B/raw/main/params.json
    wget -P models/7B/ https://huggingface.co/nyanko7/LLaMA-7B/raw/main/checklist.chk
    wget -P models/ https://huggingface.co/nyanko7/LLaMA-7B/resolve/main/tokenizer.model
    
    # converts the model to "ggml FP16 format"
    python convert-pth-to-ggml.py models/7B/ 1
    # quantizes the model to 4-bits
    ./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
    
    # enjoy
    ./main -m ./models/7B/ggml-model-q4_0.bin \
      -t 8 \
      -n 128 \
      -p 'I Have a Dream'
    

    安装依赖


    模型选择

    目前已知的模型有:

    • 7B: 1 个模型文件,占用空间 13GB,转换后总占用空间 30GB
    • 13B: 2 个模型文件,占用空间 25GB,转换后总占用空间 60GB
    • 30B: 4 个模型文件,占用空间 61GB,转换后总占用空间 120GB
    • 65B: 8 个模型文件,占用空间 122GB,转换后总占用空间 240GB

    每个模型的内存占用空间大小约为 4GB,根据自己机器内存大小选择合适的模型

    下载地址

    Meta 并没有公开模型的 hash 值,所以请自行判断是否要运行 目前已知的泄漏地址有以下几个:

    有人在官方库上故意不小心提交了模型的磁力链接

    magnet:?xt=urn:btih:ZXXDAUWYLRUXXBHUYEMS6Q5CE5WA3LVA&dn=LLaMA
    

    new bing 找到的库,里面用的好像是作者自己的 API 接口

    curl -o- https://raw.githubusercontent.com/shawwn/llama-dl/56f50b96072f42fb2520b1ad5a1d6ef30351f23c/llama.sh | bash
    

    或者通过磁力链接

    magnet:?xt=urn:btih:b8287ebfa04f879b048d4d4404108cf3e8014352&dn=LLaMA&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337%2fannounce
    

    目前找到的只有 7B 和 65B 的模型

    https://huggingface.co/nyanko7/LLaMA-7B/tree/main

    https://huggingface.co/datasets/nyanko7/LLaMA-65B/tree/main

    软 /硬件依赖

    笔者机器硬件是 Apple M1 8-core 16GB RAM

    系统版本是 12.5.1

    clang 版本如下

    ❯ c++ -v
    Apple clang version 14.0.0 (clang-1400.0.29.102)
    Target: arm64-apple-darwin21.6.0
    Thread model: posix
    InstalledDir: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
    

    Python

    Python 目前是基于 3.10 版本

    如果没有对应的 python 版本,可以通过 pipenv 或者 conda 创建一个虚拟环境出来

    pipenv shell --python 3.10
    

    或者

    conda create -n llama python=3.10
    conda activate llama
    

    安装依赖

    pip install torch numpy sentencepiece
    

    运行模型

    拉取项目

    git clone https://github.com/ggerganov/llama.cpp
    cd llama.cpp
    

    编译出 mainquantize

    make 
    

    确保模型已经下载到对应的文件夹内

    下面以 7B 模型举例子

    ls ./models
    7B
    tokenizer.model
    

    将模型转换为 ggml FP16 格式

    python convert-pth-to-ggml.py models/7B/ 1
    

    这一步会生成一个 13GB 的 models/7B/ggml-model-f16.bin 文件

    下一步将模型量化为 4-bit

    ./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
    

    如果你的模型数量有多个,需要分批次来处理

    比如 13B 的两个模型文件

    ./quantize ./models/13B/ggml-model-f16.bin   ./models/13B/ggml-model-q4_0.bin 2
    ./quantize ./models/13B/ggml-model-f16.bin.1 ./models/13B/ggml-model-q4_0.bin.1 2
    

    享受 AI 的时刻

    笔者用的是 13B 模型,-t 是线程数量,-n 是 token 数量 , -p 是你输入的内容

    ❯ ./main -m models/13B/ggml-model-q4_0.bin -t 8 -n 409600 -p 'I Have a Dream'
    main: seed = 1678677633
    llama_model_load: loading model from 'models/13B/ggml-model-q4_0.bin' - please wait ...
    llama_model_load: n_vocab = 32000
    llama_model_load: n_ctx   = 512
    llama_model_load: n_embd  = 5120
    llama_model_load: n_mult  = 256
    llama_model_load: n_head  = 40
    llama_model_load: n_layer = 40
    llama_model_load: n_rot   = 128
    llama_model_load: f16     = 2
    llama_model_load: n_ff    = 13824
    llama_model_load: n_parts = 2
    llama_model_load: ggml ctx size = 8559.49 MB
    llama_model_load: memory_size =   800.00 MB, n_mem = 20480
    llama_model_load: loading model part 1/2 from 'models/13B/ggml-model-q4_0.bin'
    llama_model_load: ............................................. done
    llama_model_load: model size =  3880.49 MB / num tensors = 363
    llama_model_load: loading model part 2/2 from 'models/13B/ggml-model-q4_0.bin.1'
    llama_model_load: ............................................. done
    llama_model_load: model size =  3880.49 MB / num tensors = 363
    
    main: prompt: 'I Have a Dream'
    main: number of tokens in prompt = 5
         1 -> ''
     29902 -> 'I'
      6975 -> ' Have'
       263 -> ' a'
     16814 -> ' Dream'
    
    sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
    
    
    I Have a Dream: A Handbook for Teachers and Students on Martin Luther King, Jr.
    Culture is always changing and being influenced by the people around us who we can observe. Ways of thinking about culture are more important than which one you believe in because it could be dangerous if your way off believing in something that isn’t true but also that means there will be changes over time so everyone should learn these things when they start school
    Added: Sun, April 29th 2018 [end of text]
    
    
    main: mem per token = 22439492 bytes
    main:     load time =  4974.55 ms
    main:   sample time =   300.81 ms
    main:  predict time = 90728.84 ms / 824.81 ms per token
    main:    total time = 98585.49 ms
    

    参考

    Running LLaMA 7B and 13B on a 64GB M2 MacBook Pro with llama.cpp

    ggerganov/llama.cpp

    1 条回复    2023-03-21 14:09:30 +08:00
    NealLason
        1
    NealLason  
       2023-03-21 14:09:30 +08:00
    7B 模型的中文支持简直像智障。。
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   3327 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 22ms · UTC 11:59 · PVG 19:59 · LAX 03:59 · JFK 06:59
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.