V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
CloudStorage
V2EX  ›  推广

在腾讯云 EMR 上使用 GooseFS 加速大数据计算服务

  •  
  •   CloudStorage · 2021-08-26 13:16:46 +08:00 · 958 次点击
    这是一个创建于 1243 天前的主题,其中的信息可能已经有所发展或是发生改变。

    GooseFS 是腾讯云对象存储团队最新推出的高性能、高可用以及可弹性伸缩的分布式缓存系统,依靠对象存储( Cloud Object Storage,COS )作为数据湖存储底座的成本优势,为数据湖生态中的计算应用提供统一的数据湖入口,可加速基于腾讯云对象存储的各类海量数据分析以及机器学习等任务。本文将介绍如何在腾讯云 EMR 上使用 GooseFS 加速大数据计算任务。

    GooseFS 是腾讯云对象存储团队近期面向下一代云原生数据湖场景推出的存储加速利器,提供与 HDFS 对标的 Hadoop Compatible FileSystem 接口实现,可为云上的大数据计算任务提供:

    • 高可靠、可弹性伸缩的分布式读写缓存服务;

    • 内存级的数据本地化( Data Locality )访问性能;

    • 基于 Namespace 粒度的读写缓存策略以及 Hive Table 级别预热;

    • 与 HDFS 一致的 Ranger 鉴权机制;

    • 对象存储 AZ 级别的加速访问与高 QPS 的元数据访问能力;以及快速部署和开箱即用等特性。

    本文将基于腾讯云 EMR 介绍如何快速部署 GooseFS 用于加速云上大数据分析任务。

    加速腾讯云 EMR 大数据计算任务

    为了在腾讯云 EMR 中使用 GooseFS 加速大数据计算任务,可参考官网文档腾讯云 EMR 环境中部署和配置 GooseFS ( https://cloud.tencent.com/document/product/436/58513 ),即可开启 GooseFS 的缓存加速能力。下文将以数据仓库业务以及迭代计算场景展示 GooseFS 的加速访问能力。

    加速基于 Hive 、Spark SQL 和 Presto 数据仓库查询业务

    很多大数据客户的数据仓库类业务具备明显的冷热周期特征,例如:某大数据客户每天会定时基于数仓生成日报报表,Hive 表的分区是日期维度。

    GooseFS 集成了 Hive Table 的元数据管理能力,并且提供了 Hive table & partition 粒度的数据预热特性,用户可以通过配置工作流任务来每天在闲时预热加载 table & partition 以降低峰值查询的带宽消耗,然后在数据访问高峰期提供内存级的缓存加速能力。

    在热表或分区变冷以后,使用 Free 命令将其从缓存中释放掉。

    | 下面,将会详细地介绍 GooseFS Table 管理能力以及预热方法。

    GooseFS Table & Partition 管理与预热

    GooseFS Table & Partition 管理与预热能力都是通过 GooseFS 的 table 命令行来实现:

    $ goosefs table
    Usage: goosefs table [generic options]
       [attachdb [-o|--option <key=value>] [--db <goosefs db name>] [--ignore-sync-errors] <udb type> <udb connection uri> <udb db name>]
       [detachdb <db name>]                                      
       [free <dbName> <tableName> [-p|--partition <partitionSpec>]]
       [help [<command>]]                                        
       [load <dbName> <tableName> [-g|--greedy] [--replication <num>] [-p|--partition <partitionSpec>]]
       [ls [<db name> [<table name>]]]                           
       [stat <dbName> <tableName>]                               
       [sync <db name>]                                          
       [transform <db name> <table name> [-d <definition>]]      
       [transformStatus [<job ID>]]
    

    其中,提供 Hive DB 绑定和解绑,预热加载 DB 下的指定 Table & Partition 。

    1. 在预热 Hive DB 中的指定 Table & Partition 到 GooseFS 之前,需要先将 DB 挂载到 GooseFS 中:
    $ goosefs table attachdb --db test_db hive thrift://metastore_host:port goosefs_db_demo
    response of attachdb
    
    1. 挂载完后,可使用 GooseFS 的命令行查看 DB 中的 Table 信息:
    $ goosefs table ls test_db web_page
    OWNER: hadoop
    DBNAME.TABLENAME: testdb.web_page (
    wp_web_page_sk bigint,
    wp_web_page_id string,
    wp_rec_start_date string,
    wp_rec_end_date string,
    wp_creation_date_sk bigint,
    wp_access_date_sk bigint,
    wp_autogen_flag string,
    wp_customer_sk bigint,
    wp_url string,
    wp_type string,
    wp_char_count int,
    wp_link_count int,
    wp_image_count int,
    wp_max_ad_count int,
    )
    PARTITIONED BY (
    )
    LOCATION (
    gfs://metastore_host:port/myiNamespace/3000/web_page
    )
    PARTITION LIST (
    {
    partitionName: web_page
    location: gfs://metastore_host:port/myNamespace/3000/web_page
    }
    )
    
    1. 然后,可预热指定 Table 到 GooseFS 中,同时还可以查看 Table 预热情况:
    $ goosefs table load test_db web_page
    Asynchronous job submitted successfully, jobId: 1615966078836
    
    1. 预热完成后,就可以正常的执行查询任务,获得 GooseFS 的本地缓存加速性能。

    GooseFS 加速性能对比

    这里,我们基于标准的 TPCDS benchmark 在腾讯云 EMR 环境中对比测试了本地 HDFS 得到整个测试过程总时延。其中,GooseFS 挂载 COSN 作为其 UFS,并且提前预热了测试数据集。

    在相同的测试数据集本地化的程度下,GooseFS 读数据访问性能上相对 HDFS 更好。具体分 SQL case 的时延数据可参考附录。

    同时,COSN 和 CHDFS 作为腾讯云上两个比较常用的大数据文件系统实现,也可作为 GooseFS 的 Under File System 使用。这里也对比测试这三个文件系统,其中 GooseFS 挂载 COSN 作为其 UFS,同样提前预热的测试数据集。

    从该项测试结果,也可以看出,GooseFS 在预热数据的条件下,可以显著加速腾讯云上大数据存储系统的访问性能。具体分 SQL case 的时延数据可参考附录。

    总结

    GooseFS 作为腾讯云对象存储新推出的云原生大数据存储加速器,解决了基于 COSN 以及 CHDFS 等云上存储的 Data Locality 的缺陷,提供了本地近内存级的访问性能。

    同时,GooseFS 提供了 Hive Table & Partition 级别的预热能力以及缓存策略管理,能够极大地方便用户完成数据预热和访问加速。在未来,GooseFS 会元数据访问性能、本地短路读性能以及智能 Cache 方向上做更深层次的优化开发,旨在进一步加速海量数据湖应用性能。关于了解更多请前往: https://cloud.tencent.com/document/product/436/56412

    附件

    case100_D3_本地 SATA_HDFS 和 case100_D3_本地 SATA_GOOSEFS 的 TPCDS 测试结果:

    SQL case case100_D3_本地 SATA-HDFS case101_D3_本地 SATA-GooseFS
    29618 28230
    query1.sql 150 167
    query2.sql 1392 1213
    query3.sql 402 329
    query8.sql 338 255
    query12.sql 280 252
    query13.sql 367 293
    query15.sql 767 706
    query19.sql 368 297
    query20.sql 503 441
    query21.sql 170 182
    query22.sql 96 94
    query26.sql 582 583
    query31.sql 1211 854
    query32.sql 929 670
    query33.sql 673 450
    query34.sql 345 253
    query36.sql 444 404
    query37.sql 473 396
    query38.sql 811 603
    query39.sql 498 510
    query40.sql 953 905
    query43.sql 328 252
    query45.sql 453 426
    query46.sql 361 332
    query48.sql 431 382
    query52.sql 345 239
    query53.sql 806 777
    query55.sql 341 237
    query56.sql 675 459
    query57.sql 2627 2559
    query59.sql 1711 1618
    query60.sql 687 465
    query63.sql 805 776
    query66.sql 433 430
    query68.sql 352 320
    query70.sql 1261 3961
    query71.sql 677 475
    query73.sql 339 237
    query76.sql 662 378
    query82.sql 758 688
    query83.sql 309 320
    query86.sql 186 152
    query87.sql 792 613
    query89.sql 809 776
    query97.sql 880 712
    query98.sql 838 789

    SSD 云盘环境的 GooseFS 、CHDFS 以及 COSN 的对比测试结果:

    SQL case case200_S5_SSD 云盘-GooseFS case201_S5_SSD 云盘-CHDFS case204_S5_SSD 云盘-COSN
    30353 36820 41803
    query1.sql 194 212 205
    query2.sql 1377 1558 1921
    query3.sql 463 457 570
    query8.sql 294 394 509
    query12.sql 287 307 347
    query13.sql 307 668 814
    query15.sql 837 867 1074
    query19.sql 354 512 586
    query20.sql 576 554 680
    query21.sql 213 196 210
    query22.sql 111 109 107
    query26.sql 806 882 973
    query31.sql 972 1328 1817
    query32.sql 778 949 1453
    query33.sql 524 779 1049
    query34.sql 292 428 526
    query36.sql 479 545 688
    query37.sql 449 500 679
    query38.sql 691 868 1210
    query39.sql 695 565 654
    query40.sql 1098 1082 1251
    query43.sql 304 378 514
    query45.sql 506 568 628
    query46.sql 412 557 610
    query48.sql 437 697 847
    query52.sql 242 328 501
    query53.sql 946 899 1058
    query55.sql 244 351 485
    query56.sql 520 704 925
    query57.sql 3223 2914 3469
    query59.sql 1965 1930 2302
    query60.sql 539 696 905
    query63.sql 935 934 1025
    query66.sql 543 593 584
    query68.sql 380 570 578
    query70.sql 1430 4173 1608
    query71.sql 536 780 951
    query73.sql 282 384 547
    query76.sql 368 648 981
    query82.sql 796 828 972
    query83.sql 369 353 378
    query86.sql 163 184 219
    query87.sql 712 896 1038
    query89.sql 951 924 1050
    query97.sql 801 871 1213
    query98.sql 952 900 1092
    目前尚无回复
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   968 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 26ms · UTC 21:00 · PVG 05:00 · LAX 13:00 · JFK 16:00
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.