主要是自用
https://github.com/mo-han/mo-han-toolbox/tree/master/mylib/wrapper
下面摘自 readme
Example:
from mylib.wrapper import cwebp
cwebp.image_to_bytes
cwebp.image_from_bytes
src = 'src/image/filepath' or b'image file bytes'
dst = '-' or 'dst/image/filepath' # '-' get cwebp output image bytes from stdout and put it into dict
cwebp.cwebp(src, q=50, resize=0.5, print_ssim=True)
output something like this:
{'kwargs': {'q': 50, 'print_ssim': True, 'resize': (334, 482)},
'out': b'A LONG BYTES OF THE OUTPUT IMAGE FILE',
'msg': ["Saving file '-'",
'File: -',
'Dimension: 334 x 482',
'Output: 8352 bytes Y-U-V-All-PSNR 39.53 99.00 99.00 41.29 dB',
' (0.42 bpp)',
'block count: intra4: 256 (39.32%)',
' intra16: 395 (60.68%)',
' skipped: 388 (59.60%)',
'bytes used: header: 121 (1.4%)',
' mode-partition: 1174 (14.1%)',
' Residuals bytes |segment 1|segment 2|segment 3|segment 4| total',
' macroblocks: | 1%| 10%| 27%| 62%| 651',
' quantizer: | 52 | 49 | 42 | 34 |',
' filter level: | 16 | 10 | 7 | 5 |',
'SSIM: B:19.07 G:19.07 R:19.07 A:99.00 Total:20.32'],
'cmd': ['cwebp',
'-q',
'50',
'-print_ssim',
'-resize',
'334',
'482',
'-o',
'-',
'--',
'-'],
'code': 0,
'ok': True,
'src': {'path': '-', 'size': 30230, 'width': 667, 'height': 964},
'dst': {'q': 50.0,
'scale': 0.5,
'path': '-',
'width': 334,
'height': 482,
'size': 8352,
'psnr': {'y': 39.53, 'u': 99.0, 'v': 99.0, 'all': 41.29},
'ssim': {'b': 19.07, 'g': 19.07, 'r': 19.07, 'a': 99.0, 'total': 20.32},
'compress': 0.276}}
Example:
from mylib.wrapper import tesseract_ocr
t = tesseract_ocr.TesseractOCRCLIWrapper('path/of/tesseract/executable')
# input image could be set via different methods for different data type
t.set_image_array
t.set_image_bytes
t.set_image_object
t.set_image_file
t.set_language('chi_sim', 'eng').set_image_bytes(b'IMAGE FILE BYTES').get_ocr_tsv_to_dict_list()
output something like this:
[{'text': '名',
'confidence': 0.91,
'box': ((320, 10), (333, 10), (333, 23), (320, 23)),
'page_block_paragraph_line_word_level': (1, 1, 1, 1, 1, 5)},
{'text': '称',
'confidence': 0.87,
'box': ((320, 28), (333, 28), (333, 40), (320, 40)),
'page_block_paragraph_line_word_level': (1, 1, 1, 1, 2, 5)},
{'text': '修改',
'confidence': 0.9,
'box': ((320, 336), (333, 336), (333, 366), (320, 366)),
'page_block_paragraph_line_word_level': (1, 1, 1, 1, 3, 5)},
{'text': '日',
'confidence': 0.96,
'box': ((320, 372), (333, 372), (333, 379), (320, 379)),
'page_block_paragraph_line_word_level': (1, 1, 1, 1, 4, 5)},
{'text': '期',
'confidence': 0.96,
'box': ((320, 387), (333, 387), (333, 395), (320, 395)),
'page_block_paragraph_line_word_level': (1, 1, 1, 1, 5, 5)},
{'text': ' ',
'confidence': 0.95,
'box': ((0, 195), (0, 195), (0, 224), (0, 224)),
'page_block_paragraph_line_word_level': (1, 2, 1, 1, 1, 5)},
{'text': 'label_cn.txt',
'confidence': 0.8,
'box': ((283, 38), (295, 38), (295, 120), (283, 120)),
'page_block_paragraph_line_word_level': (1, 3, 1, 1, 1, 5)},
{'text': '2019/8/5',
'confidence': 0.87,
'box': ((281, 337), (294, 337), (294, 401), (281, 401)),
'page_block_paragraph_line_word_level': (1, 3, 1, 1, 2, 5)},
{'text': '15:24',
'confidence': 0.95,
'box': ((283, 408), (294, 408), (294, 446), (283, 446)),
'page_block_paragraph_line_word_level': (1, 3, 1, 1, 3, 5)},
{'text': '2019/8/5',
'confidence': 0.91,
'box': ((254, 337), (267, 337), (267, 401), (254, 401)),
'page_block_paragraph_line_word_level': (1, 3, 1, 2, 3, 5)},
{'text': '15:24',
'confidence': 0.96,
'box': ((256, 408), (267, 408), (267, 446), (256, 446)),
'page_block_paragraph_line_word_level': (1, 3, 1, 2, 4, 5)},
{'text': '2019/8/5',
'confidence': 0.89,
'box': ((227, 337), (240, 337), (240, 401), (227, 401)),
'page_block_paragraph_line_word_level': (1, 3, 1, 3, 3, 5)},
{'text': '15:24',
'confidence': 0.96,
'box': ((229, 408), (240, 408), (240, 446), (229, 446)),
'page_block_paragraph_line_word_level': (1, 3, 1, 3, 4, 5)}]