在数组中找到第 k 大的元素。(你可以交换数组中的元素的位置)
输入:
n = 1, nums = [1,3,4,2]
输出:
4
输入:
n = 3, nums = [9,3,2,4,8]
输出:
4
最容易想到的就是直接排序,返回第 k 大的值。时间复杂度是 O(nlogn),这里提供 O(n)的解法。
这题其实是快速排序算法的变体,在九章算法班中也有详细讲解。通过快速排序算法的 partition 步骤,可以将小于 pivot 的值划分到 pivot 左边,大于 pivot 的值划分到 pivot 右边,所以可以直接得到 pivot 的 rank 。从而缩小范围继续找第 k 大的值。
partition 步骤:
设数组长度为 n
只需要快速选择游标的 O(1)额外空间。
public class Solution {
/**
* @param n: An integer
* @param nums: An array
* @return: the Kth largest element
*/
public int kthLargestElement(int k, int[] nums) {
int n = nums.length;
// 为了方便编写代码,这里将第 k 大转换成第 k 小问题。
k = n - k;
return partition(nums, 0, n - 1, k);
}
public int partition(int[] nums, int start, int end, int k) {
int left = start, right = end;
int pivot = nums[left];
while (left <= right) {
while (left <= right && nums[left] < pivot) {
left++;
}
while (left <= right && nums[right] > pivot) {
right--;
}
if (left <= right) {
swap(nums, left, right);
left++;
right--;
}
}
// 如果第 k 小在右侧,搜索右边的范围,否则搜索左侧。
if (k <= right) {
return partition(nums, start, right, k);
}
if (k >= left) {
return partition(nums, left, end, k);
}
return nums[k];
}
public void swap(int[] nums, int x, int y) {
int temp = nums[x];
nums[x] = nums[y];
nums[y] = temp;
}
}